High Efficiency Transfection of iCell[®] Cardiomyocytes and Stem Cell Relevant Cell Sources

Miguel Dominguez¹, Chuenchanok Khodthong¹, Anthony Lauer¹, Elizabeth Dominguez², Michael McLachlan², Laura Juckem¹ ¹ Mirus Bio, Madison, Wl² Cellular Dynamics International, Madison, Wl

Figure 5. siRNA-mediated Gene Silencing by *Trans*IT-TKO[®] Transfection of iCell[®] Cardiomyocytes

Panels A and B show the effect of GAPDH-targeted siRNA on GAPDH (targeted) and HPRT1 (non-targeted) mRNA expression, respectively. iCell Cardiomyocytes were cultured for 7 days in a 12-well cell culture plate before transfection with either control (scrambled) or GAPDH siRNA (sense: GCUCAUUUCCUGGUAUGACUU; antisense: GUCAUACCAGGAAAUGAGCUU) using *Trans*IT-TKO (3 - 5 µl/well). 72 hours post-transfection the GAPDH and HPRT1 (non-targeted) mRNA levels were measured relative to 18s rRNA levels and normalized to the mRNA levels obtained following transfection of the control siRNA in each experiment. The bar graphs show the mean with standard error of the mean (SEM) of three independent transfection complexes.

TransIT® Transfection with Stem Cells and Related Cell Types

Cell Type	Nucleic Acid	Mirus Reagent	Application	Reference
Human embryonic stem cell derived neural progenitors	Plasmid DNA	TransIT-2020	Stem cell transfection	Scientist feedback
Human foreskin fibroblasts	Plasmid DNA	TransIT-2020	DNA transfection	Scientist feedback
Human induced pluripotent stem (iPS) cells	Plasmid DNA	TransIT-2020	Stem cell transfection	Figure 3A.
	Plasmid DNA	Ingenio	Stem cell transfection	Figure 3B.
Human mesenchymal stem cells	Plasmid DNA	TransIT-2020	Stem cell transfection	Scientist feedback
Human skin fibroblasts	Plasmid DNA	TransIT-2020	DNA transfection	Scientist feedback
iCell Cardiomyocytes	Plasmid DNA	TransIT-LT1	Stem cell transfection	Figure 4.
Mouse embryonic fibroblasts	Plasmid DNA	TransIT-2020	DNA transfection	Scientist feedback
Mouse embryonic stem cell derived cardiomyocytes	Plasmid DNA	TransIT-2020	Stem cell transfection	Scientist feedback
Normal human dermal fibroblasts (NHDF)	Plasmid DNA	TransIT-2020	DNA transfection	Scientist feedback
SRF -/- mouse embryonic stem cells	Plasmid DNA	TransIT-LT1	Stem cell transfection	Staus et al. 2007 Arterioscl Throm Vas 27:478-486
BJ human neonatal foreskin fibroblasts	mRNA	TransIT-mRNA	Stem cell reprogramming	Warren et al. 2010 Cell Stem Cell 7(5):618-30.
C3H/10T1/2	mRNA	TransIT-mRNA	Stem cell reprogramming	Angel et al. PLoS ONE 5(7): e11756.
CCD-1109Sk human normal adult skin fibroblasts	mRNA	TransIT-mRNA	Stem cell reprogramming	Angel et al. PLoS ONF 5(7): e11756.
MRC-5 human lung fibroblasts	mRNΔ	TranslT-mRNA	Stem cell reprogramming	Angel et al. PLoS ONE $5(7)$: e11756
Primary human neonatal epidermal			Stem cen reprogramming	Anger et al. 1 203 Olde 5(7). e11750.
keratinocytes	mRNA	<i>Trans</i> IT-mRNA	Stem cell reprogramming	Warren et al. 2010 Cell Stem Cell 7(5):618-30.
Primary human lung fibroblasts	mRNA	TransIT-mRNA	Stem cell reprogramming	Warren et al. 2010 Cell Stem Cell 7(5):618-30.
Human mesenchymal stem cells	siRNA	TransIT-TKO	Stem cell differentiation	Andersen et al. 2010 Molecular Therapy 18(11): 2018-2027
iColl Cardiomyocytas	ciDNIA	TransIT TVO	Knockdown of gene	Figuro 5
Human adipose derived adult stem cells	SINIVA		Knockdown of gene	Wall et al. 2007 American Journal of Physiology
(hADAS)	siRNA	TransIT-siQUEST	expression	293(5):C1532-8

- Transfection Kit
- TransIT-2020 Transfection Reagents
- Reagent

The Transfection Experts

siRNA Knockdown in iCell Cardiomyocytes

Conclusions

Mirus Bio nucleic acid delivery reagents enable high efficiency transfection of stem cells and other hard-to-transfect cell types used for stem cell research.

Perform mRNA transfections in source-specific cell fibroblasts using TransIT-mRNA

Transfect plasmid DNA effectively into iPS and differentiated cells with TransIT-LT1 and

Introduce siRNA for silencing of differentiated cell types with TransIT-TKO Transfection

Electroporate stem cells cost effectively with Ingenio Electroporation Solution